Implementation of MOVES-based PM2.5 emissions approach

for onroad gasoline sources, using hourly, gridded temperatures

4/14/2009

Marc Houyoux, EPA OAQPS
Madeleine Strum • Rich Mason • Pat Dolwick, EPA, OAQPS
Harvey Michaels • Andrew Huang, EPA, OTAQ
Christopher Allen, CSC

- Study approach
- Motor Vehicle Emissions Simulator (MOVES) updates
- Incorporation of MOVES-based emissions
- Impacts of MOVES on PM emissions for use in air quality modeling
- Impacts of MOVES on modeled air quality

- 2005 base year
- SMOKE MM5 CMAQ annual simulations
- National, 36-km modeling domain
- Three simulation cases:
 - NMIM : Uses only National Mobile Inventory Model (NMIM) based onroad, using MOBILE6.2
 - MOVES72 : Uses MOVES-based onroad gasoline, without PM temperature adjustments
 - MOVES : Uses MOVES-based onroad gasoline with PM adjustments
- All other emissions were the same across the cases

36-km Gridded Modeling Domain

Major MOVES Updates from MOBILE

- Light duty Emission factors developed from
 - Thousands of in-use vehicles from I/M programs
 - Kansas City gasoline PM study, including temperature impacts
- Heavy duty diesel Emission factors developed from
 - 100+ in-use vehicles
 - ROVER (Real time On-road Vehicle Emission Reporter)
- Updated information on vehicle fleet and activity (national defaults)
 - Instrumented vehicles
 - VIUS2002 (Census survey of trucks)
 - DOE Annual Energy Outlook
- Most of the database for MOVES is national defaults or derived from them NMIM / MOBILE6-based modeling uses local supplied inputs via the NEI process)
- We are not yet using the Heavy Duty Diesel updates in our modeling
- MOVES draft release soon, final by end of 2009

MOVES-based Approach Summary

- MOVES creates emissions by state/SCC for onroad gasoline CO, NOX, VOC, PM_{2.5}, elemental carbon, primary sulfate, naphthalene, benzene, acetaldehyde, formaldehyde, acrolein, and butadiene
- All MOVES emissions allocated from state to county using NEI 2005 v2 (existing NMIM-MOBILE6-based approach)
- PM_{2.5} and species computed at 72°
- Running and start emissions kept separate so temperature adjustments could be applied separately for each
- Not using MOVES for California
- Compute all PM species at 72° from MOVES species and assumptions (in paper)
- Process PM species at 72° through SMOKE
- Apply temperature corrections to hourly, gridded data using hourly, gridded temperatures. Applied to elemental carbon (PEC), organic carbon (POC), and non-carbon organic mass (in PMFINE species)

Approach for using MOVES

Onroad gasoline MOVES PM_{2.5} Temperature Adjustments

- Factors are much higher for "start" mode (but "start" 72° emissions are much less than "running")
- Factors converge at higher temperatures
- Factors get applied only to elemental carbon, organic carbon, and other non-carbon mass associated with OC (affecting CMAQ "PMFINE" species)

2005 48-state MOVES PM_{2.5} Temperature Adjustments Impact (onroad gas)

- Impacts on gasoline onroad emissions are dramatic
- Impact on "Other PM_{2.5}" comes from organic carbon particles (oxygen, hydrogen and other compounds) that are part of the organic carbon from MOVES
- Start emissions increase from 24% to 34% of onroad gasoline

Percentages show increase from temperature adjustment

National/annual Comparison of national inventories

NMIM vs. MOVES for onroad gasoline

Impact of MOVES emissions on onroad gasoline vs. NMIM

Organic Carbon Comparison Sum over all Sectors, January tons/month

Take away: plots look very similar. Next slide shows differences

All Sector POC sum including NMIM

All Sector POC sum including MOVES w/ Temperature Adjustments

Organic Carbon Impact

Sum over all Sectors, January tons/month

All Sector **Absolute Difference**POC MOVES onroad gas minus NMIM

Take away:

- largest impact in large cities, particularly the cold ones.

January 2005 PM_{2.5} onroad gasoline MOVES vs. NMIM by state

Annual 2005 PM_{2.5} onroad gasoline MOVES vs. NMIM by state

January 2005 PM_{2.5} onroad gasoline

w/ MOVES onroad gas vs. NMIM by NA area top 30 largest January MOVES emissions for PM nonattainment areas

Impact across all sectors January 2005 PM_{2.5} onroad gasoline

w/ MOVES onroad gas vs. NMIM by NA area top 6 largest January MOVES PM_{2.5} emissions for PM nonattainment areas

Note: does not include additional emissions from MOVES HDD

Impact across all sectors January 2005 POC onroad gasoline

w/ MOVES onroad gas vs. NMIM by NA area top 6 largest January MOVES PM_{2.5} emissions for PM nonattainment areas

Note: does not include additional emissions from MOVES HDD

Absolute change in 2005 base case annual average PM_{2.5} concentrations (MOVES – NMIM)

Percent change in 2005 base case annual average PM_{2.5} concentrations (MOVES – NMIM)/NMIM

Absolute change in 2005 base case <u>JANUARY</u> average PM_{2.5} concentrations (MOVES – NMIM)

Percent change in 2005 base case <u>JANUARY</u> average PM_{2.5} concentrations (MOVES – NMIM)/NMIM

MOVES Impact on Modeled Air Quality

Percent change in monthly average organic carbon concentrations from using temperature-adjusted PM2.5 rather than unadjusted at five PM2.5 nonattainment areas

Emissions Conclusions

- Nationally/annually, MOVES impact on all-sector PM_{2.5} is ~1.0%, (including only onroad gasoline impacts)
- MOVES PM_{2.5} impacts are much greater in cities in northern (colder) climates (e.g., 15% increase in total PM_{2.5} in NY PM NA area)
- Larger impact on organic carbon (e.g., 31% increase in total POC in NY PM NA area)
- Summertime PM_{2.5} changes relatively little
- NOx impact 4% increase nationally/annually across all sectors (including only onroad gasoline impacts)
- VOC decrease ~4.7% nationally/annually, may be significant in some cities
- Key caveats:
 - Use of MOVES national defaults
 - State-based MOVES processing
 - Onroad gasoline only (not HDD impacts)

Modeled Air Quality Conclusions

- MOVES-based emissions increase modeled base case air quality PM_{2.5} concentrations increased by up to 1.0 μg/m3 in highly-populated urban areas of the U.S. in the wintertime, as compared to MOBILE6-based emissions only
- The majority of the air quality changes were due to the temperature adjustments as opposed to the other MOVES-based emissions updates

- Ozone impacts of the NOx and VOC emissions changes
- Revised CMAQ model performance evaluations using the MOVES-based inventories
- Incorporate diesel MOVES impacts
- Adapt temperature adjustment approaches for use of local-specific MOVES inputs
- Possible extension of approaches to VOC